Сверхзвуковой самолет. Сверхзвуковой самолет — история развития Как называется сверхзвуковой самолет

Ровно 15 лет назад три последних сверхзвуковых пассажирских самолета Concorde британской авиакомпании British Airways совершили прощальный полет. В тот день, 24 октября 2003 года, эти самолеты, пролетев на малой высоте над Лондоном, приземлились в «Хитроу» и тем завершили недолгую историю сверхзвуковой пассажирской авиации. Тем не менее, сегодня авиаконструкторы по всему миру вновь задумываются о возможности быстрых перелетов - из Парижа в Нью-Йорк за 3,5 часа, из Сиднея в Лос-Анджелес - за 6 часов, из Лондона в Токио - за 5 часов. Но прежде чем сверхзвуковые самолеты вернутся на международные пассажирские маршруты, разработчикам придется решить множество задач, среди которых одна из важнейших - уменьшение шумности быстрых летательных аппаратов.

Короткая история быстрых полетов

Пассажирская авиация начала формироваться в 1910-х годах, когда появились первые самолеты, специально спроектированные для перевозки людей по воздуху. Самым первым из них стал французский Bleriot XXIV Limousine компании Bleriot Aeronautique. Он использовался для увеселительных воздушных прогулок. Спустя два года в России появился С-21 «Гранд», созданный на базе тяжелого бомбардировщика «Русский витязь» Игоря Сикорского. Его построили на Русско-Балтийском вагонном заводе. Дальше авиация начала развиваться семимильными шагами: сперва начались перелеты между городами, потом между странами, а затем и между континентами. Самолеты позволяли добраться до места назначения быстрее, чем на поезде или корабле.

В 1950-х годах прогресс в разработке реактивных двигателей значительно ускорился, и для боевой авиации стали доступны, пусть и кратковременно, полеты на сверхзвуковой скорости. Сверхзвуковой скоростью принято называть движение до пяти раз быстрее скорости звука, которая меняется в зависимости от среды распространения и ее температуры. При нормальном атмосферном давлении на уровне моря звук распространяется со скоростью 331 метр в секунду, или 1191 километр в час. По мере набора высоты плотность и температура воздуха снижается, снижается и скорость звука. Например, на высоте 20 тысяч метров она составляет уже около 295 метров в секунду. Но уже на высоте около 25 тысяч метров и по мере ее набора до более чем 50 тысяч метров температура атмосферы начинает понемногу увеличиваться по сравнению с нижними слоями, а вместе с ней увеличивается и местная скорость звука.

Рост температуры на этих высотах объясняется, в том числе, высокой концентрацией в воздухе озона, образующего озоновый щит и поглощающего часть солнечной энергии. В результате скорость звука на высоте 30 тысяч метров над морем составляет около 318 метров в секунду, а на высоте 50 тысяч - почти 330 метров в секунду. В авиации для измерения скорости полета широко используется число Маха. Если говорить упрощенно, оно выражает местную скорость звука для конкретной высоты, плотности и температуры воздуха. Так, скорость условного полета, равная двум числам Маха, на уровне моря будет составлять 2383 километра в час, а на высоте 10 тысяч метров - 2157 километров в час. Впервые звуковой барьер на скорости 1,04 числа Маха (1066 километров в час) на высоте 12,2 тысячи метров преодолел американский летчик Чак Йегер в 1947 году. Это был важный шаг на пути освоения сверхзвуковых полетов.

В 1950-х годах авиаконструкторы в нескольких странах мира начали работать над проектами сверхзвуковых пассажирских самолетов. В итоге в 1970-х появились французский Concorde и советский Ту-144. Это были первые и пока еще единственные пассажирские сверхзвуковые самолеты в мире. Оба типа летательных аппаратов использовали обычные турбореактивные двигатели, оптимизированные для длительной работы в сверхзвуковом режиме полета. Ту-144 эксплуатировались до 1977 года. Самолеты летали на скорости в 2,3 тысячи километров в час и могли перевозить до 140 пассажиров. Однако билеты на их рейсы стоили в среднем в 2,5–3 раза дороже обычных. Низкий спрос на быстрые, но дорогостоящие перелеты, а также общие сложности в эксплуатации и обслуживании Ту-144 привели к тому, что их просто сняли с пассажирских рейсов. Однако самолеты еще какое-то время использовались в испытательных полетах, в том числе и по контракту с NASA.

Concorde прослужили заметно дольше - до 2003 года. Перелеты на французских лайнерах тоже стоили дорого и большой популярностью не пользовались, но Франция и Великобритания продолжали их эксплуатировать. Стоимость одного билета на такой перелет составляла, в пересчете на сегодняшние цены, около 20 тысяч долларов. Французский Concorde совершал полеты на скорости чуть более двух тысяч километров в час. Расстояние от Парижа до Нью-Йорка самолет мог покрыть за 3,5 часа. В зависимости от конфигурации Concorde могли перевозить от 92 до 120 человек.

История «Конкордов» закончилась неожиданно и быстро. В 2000 году произошла авиакатастрофа Concorde, в которой погибли 113 человек. Спустя год в пассажирских авиаперевозках начался кризис, вызванный терактами 11 сентября 2001 года (два угнанных террористами самолета с пассажирами врезались в башни Всемирного торгового центра в Нью-Йорке, еще один, третий, - в здание Пентагона в округе Арлингтон, а четвертый упал в поле недалеко от Шенксвилла в Пеннсильвании). Затем истек срок гарантийного обслуживания самолетов Concorde, которым занималась компания Airbus. Все эти факторы вместе сделали эксплуатацию сверхзвуковых пассажирских самолетов крайне невыгодными, и летом-осенью 2003 года авиакомпании Air France и British Airways по очереди списали все «Конкорды».


После закрытия программы Concorde в 2003 году надежда на возвращение сверхзвуковой пассажирской авиации в строй еще оставалась. Конструкторы надеялись на новые экономичные двигатели, аэродинамические расчеты и системы автоматизированного проектирования, способные сделать перелеты на сверхзвуковой скорости экономически доступными. Но в 2006 и 2008 году Международная организация гражданской авиации приняла новые стандарты авиационного шума, запретившие, помимо прочего, любые сверхзвуковые полеты над населенными участками суши в мирное время. Этот запрет не распространяется на специально выделенные для военной авиации воздушные коридоры. Работы над проектами новых сверхзвуковых самолетов затормозились, но сегодня снова начали набирать обороты.

Тихий сверхзвук

Сегодня разработкой сверхзвуковых пассажирских самолетов занимаются несколько предприятий и правительственных организаций в мире. Такие проекты, в частности, ведут российские компании «Сухой» и «Туполев», Центральный аэрогидродинамический институт имени Жуковского, французская Dassault, Японское агентство аэрокосмических исследований, европейский концерн Airbus, американские Lockheed Martin и Boeing, а также несколько стартапов, включая Aerion и Boom Technologies. В целом конструкторы условно разделились на два лагеря. Представители первого из них считают, что разработать «тихий», соответствующий по шумности дозвуковым лайнерам, сверхзвуковой самолет в ближайшее время не удастся, а значит, нужно построить быстрый пассажирский летательный аппарат, который будет переходить на сверхзвук там, где это разрешено. Такой подход, полагают конструкторы из первого лагеря, все равно позволит сократить время перелета из одной точки в другую.

Конструкторы из второго лагеря преимущественно сосредоточились на борьбе с ударными волнами. В полете на сверхзвуковой скорости планер самолета образует множество ударных волн, наиболее значимые из которых возникают в носовой части и в зоне хвостового оперения. Кроме того, ударные волны обычно появляются на передней и задней кромках крыла, на передних кромках хвостового оперения, в зонах завихрителей потока и на кромках воздухозаборников. Ударная волна представляет собой область, в которой давление, плотность и температура среды испытывают резкий и сильный скачок. Наблюдателями на земле такие волны воспринимаются как громкий хлопок или даже взрыв - именно из-за этого сверхзвуковые полеты над населенной частью суши запрещены.

Эффект взрыва или очень громкого хлопка производят ударные волны так называемого N-типа, образующиеся при взрыве бомбы или на планере сверхзвукового истребителя. На графике роста давления и плотности такие волны напоминают букву N латинского алфавита из-за резкого повышения давления на фронте волны с резкими же падением давления после него и последующей нормализацией. В ходе лабораторных экспериментов исследователи Японского агентства аэрокосмических исследований выяснили, что изменение формы планера может сглаживать пики на графике ударной волны, превращая ее в волну S-типа. Такая волна имеет плавный и не столь значительный, как у N-волны, перепад давления. Специалисты NASA полагают, что S-волны будут восприниматься наблюдателями как далекий хлопок автомобильной дверью.


N-волна (красная) до аэродинамической оптимизации сверхзвукового планера и подобие S-волны после оптимизации

В 2015 году японские конструкторы собрали беспилотный планер D-SEND 2, чья аэродинамическая форма была спроектирована таким образом, чтобы уменьшать количество возникающих на нем ударных волн и их интенсивность. В июле 2015 года разработчики испытали планер на ракетном полигоне «Эсрейндж» в Швеции и отметили существенное уменьшение количества ударных волн, образующихся на поверхности нового планера. Во время испытания D-SEND 2, не оснащенный двигателями, сбросили с воздушного шара с высоты 30,5 тысячи метров. Во время падения планер длиной 7,9 метра набрал скорость в 1,39 числа Маха и пролетел мимо расположенных на разной высоте привязных аэростатов, оборудованных микрофонами. При этом исследователи замеряли не только интенсивность и число ударных волн, но и анализировали влияния состояния атмосферы на раннее их возникновение.

По оценке японского агентства, звуковой удар от летательных аппаратов, сопоставимых по размерам со сверхзвуковыми пассажирскими самолетами Concorde и выполненных по схеме D-SEND 2, при полете на сверхзвуковой скорости будет вдвое менее интенсивным, чем раньше. От планеров обычных современных самолетов японский D-SEND 2 отличается не осесимметричным расположением носовой части. Киль аппарата смещен к носовой части, а горизонтальное хвостовое оперение выполнено цельноповоротным и имеет отрицательный угол установки по отношению к продольной оси планера, то есть законцовки оперения находятся ниже точки крепления, а не выше, как обычно. Крыло планера имеет нормальную стреловидность, но выполнено ступенчатым: оно плавно сопрягается с фюзеляжем, а часть его передней кромки расположена к фюзеляжу под острым углом, но ближе к задней кромке этот угол резко увеличивается.

По похожей схеме в настоящее время создается сверхзвуковой американского стартапа Aerion и , разрабатываемый Lockheed Martin по заказу NASA. С упором на уменьшение количества и интенсивности ударных волн проектируется и российский (Сверхзвуковой Деловой Самолет/Сверхзвуковой Пассажирский Самолет). Некоторые из проектов быстрых пассажирских самолетов планируется завершить в первой половине 2020-х годов, однако авиационные правила к тому времени пересмотрены все же еще не будут. Это означает, что новые самолеты первое время будут выполнять сверхзвуковые полеты только над водой. Дело в том, что для снятия ограничения на сверхзвуковые полеты над населенной частью суши разработчикам придется провести множество испытаний и представить их результаты на рассмотрение авиационных властей, включая Федеральное управление гражданской авиации США и Европейское агентство по безопасности полетов.


S-512 / Spike Aerospace

Новые двигатели

Еще одним серьезным препятствием на пути создания серийного пассажирского сверхзвукового самолета являются двигатели. Конструкторы уже сегодня нашли множество способов сделать турбореактивные двигатели экономичнее, чем они были десять-двадцать лет назад. Это и использование редукторов, убирающих жесткую сцепку вентилятора и турбины в двигателе, и применение керамических композиционных материалов, позволяющих оптимизировать температурный баланс в горячей зоне силовой установки, и даже введение дополнительного - третьего - воздушного контура вдобавок к уже существующим двум, внутреннему и внешнему. В области создания экономичных дозвуковых двигателей конструкторы уже достигли потрясающих результатов, а ведущиеся новые разработки обещают и вовсе существенную экономию. Подробнее о перспективных исследованиях вы можете почитать в нашем материале .

Но, несмотря на все эти разработки, сверхзвуковой полет экономичным назвать пока еще сложно. Например, перспективный сверхзвуковой пассажирский самолет стартапа Boom Technologies получит три турбовентиляторных двигателя семейства JT8D компании Pratt & Whitney или J79 компании GE Aviation. В крейсерском полете удельный расход топлива этими двигателями составляет около 740 граммов на килограмм-силы в час. При этом двигатель J79 может быть оснащен форсажной камерой, при использовании которой расход топлива увеличивается до двух килограммов на килограмм-силы в час. Такой расход сопоставим с расходом топлива двигателями, например, истребителя Су-27, задачи которого существенно отличаются от перевозки пассажиров.

Для сравнения, удельный расход топлива единственных в мире серийных турбовинтовентиляторных двигателей Д-27, установленных на украинском транспортнике Ан-70, составляет всего 140 граммов на килограмм-силы в час. Американский двигатель CFM56, «классика» лайнеров Boeing и Airbus, имеет удельный расход топлива в 545 граммов на килограмм-силы в час. Это означает, что без серьезной переработки конструкции реактивных авиационных двигателей сверхзвуковые полеты не станут достаточно дешевыми, чтобы получить широкое распространение, и будут востребованы разве что в деловой авиации - большой расход топлива ведет к росту цен на билеты. Снизить высокую стоимость сверхзвуковых авиаперевозок объемами тоже не получится - проектируемые сегодня самолеты рассчитаны на перевозку от 8 до 45 пассажиров. Обычные же самолеты вмещают больше сотни человек.

Тем не менее, в начале октября текущего года GE Aviation проект нового турбовентиляторного реактивного двигателя Affinity. Эти силовые установки планируется монтировать на перспективный сверхзвуковой пассажирский самолет AS2 компании Aerion. Новая силовая установка конструктивно объединяет в себе особенности реактивных двигателей с малой степенью двухконтурности для боевых самолетов и силовых установок с большой степенью двухконтурности для пассажирских самолетов. При этом каких-либо новых и прорывных технологий в Affinity нет. Новый двигатель GE Aviation относит к силовым установкам со средней степенью двухконтурности.

Основу двигателя составляет модифицированный газогенератор турбовентиляторного двигателя CFM56, который, в свою очередь, конструктивно основан на газогенераторе от F101, силовой установки для сверхзвуковых бомбардировщиков B-1B Lancer. Силовая установка получит модернизированную электронно-цифровую систему управления двигателем с полной ответственностью. Какие-либо подробности о конструкции перспективного двигателя разработчики не раскрыли. Тем не менее, в GE Aviation ожидают, что удельный расход топлива двигателями Affinity будет не намного выше или даже сопоставим с расходом топлива современными турбовентиляторными двигателями обычных дозвуковых пассажирских самолетов. Каким образом этого удастся добиться для сверхзвукового полета, не ясно.


Boom / Boom Technologies

Проекты

Несмотря на множество проектов сверхзвуковых пассажирских самолетов в мире (включая даже нереализуемый проект переделки стратегического бомбардировщика Ту-160 в пассажирский сверхзвуковой лайнер, предложенный президентом России Владимиром Путиным), наиболее близкими к летным испытаниям и мелкосерийному производству можно считать AS2 американского стартапа Aerion, S-512 испанского Spike Aerospace и Boom американского Boom Technologies. Планируется, что первый будет выполнять полеты на скорости 1,5 числа Маха, второй - 1,6 числа Маха, а третий - 2,2 числа Маха. Самолет X-59, создаваемый Lockheed Martin по заказу NASA, будет демонстратором технологий и летающей лабораторией, запускать его в серию не планируется.

В Boom Technologies уже заявили, что постараются сделать перелеты на cверхзвуковых самолетах очень дешевыми. Например, стоимость перелета по маршруту Нью-Йорк - Лондон в Boom Technologies оценили в пять тысяч долларов. Столько сегодня стоит перелет по этому маршруту в бизнес-классе обычного дозвукового лайнера. Лайнер Boom над населенной сушей будет летать на дозвуковой скорости и переходить на сверхзвук над океаном. Самолет при длине 52 метра и размахе крыла 18 метров сможет перевозить до 45 пассажиров. До конца 2018 года Boom Technologies планирует выбрать один из нескольких проектов нового самолета для реализации в металле. Первый полет лайнера планируется на 2025 год. Эти сроки компания перенесла; изначально Boom планировалось поднять в воздух в 2023 году.

По предварительным расчетам, длина самолета AS2, рассчитанного на 8-12 пассажиров, будет равняться 51,8 метра, а размах крыла - 18,6 метра. Максимальная взлетная масса сверхзвукового самолета составит 54,8 тонны. AS2 будет выполнять полеты над водой на крейсерской скорости в 1,4-1,6 числа Маха, замедляясь до 1,2 над сушей. Несколько меньшая скорость полета над сушей вкупе с особой аэродинамической формой планера позволит, как рассчитывают разработчики, почти полностью избегать формирования ударных волн. Дальность полета самолета на скорости в 1,4 числа Маха составит 7,8 тысячи километров и 10 тысяч километров - на скорости в 0,95 числа Маха. Первый полет самолета планируется на лето 2023 года, а на октябрь того же года - первый трансатлантический перелет. Его разработчики приурочат к 20-летию со дня последнего полета «Конкорда».

Наконец, Spike Aerospace планирует начать летные испытания полноценного прототипа S-512 не позднее 2021 года. Поставки первых серийных самолетов заказчикам запланированы на 2023 год. Согласно проекту, S-512 сможет перевозить до 22 пассажиров на скорости до 1,6 числа Маха. Дальность полета этого самолета составит 11,5 тысячи километров. С октября прошлого года Spike Aerospace нескольких уменьшенных моделей сверхзвукового самолета. Их целью является проверка конструкторских решений и эффективности элементов управления полетом. Все три перспективных пассажирских самолета создаются с упором на особую аэродинамическую форму, которая позволит уменьшить интенсивность ударных волн, образующихся при сверхзвуковом полете.

В 2017 году объем авиационных пассажирских перевозок во всем мире составил четыре миллиарда человек, из которых 650 миллионов совершили длительные перелеты протяженностью от 3,7 до 13 тысяч километров. 72 миллиона «дальнобойных» пассажиров летали первым и бизнес-классом. Именно на эти 72 миллиона человек разработчики сверхзвуковых пассажирских самолетов и нацеливаются в первую очередь, полагая, что они с удовольствием заплатят немного больше денег за возможность провести в воздухе примерно вдвое меньше времени, чем обычно. Тем не менее, сверхзвуковая пассажирская авиация, вероятнее всего, начнет активно развиваться после 2025 года. Дело в том, что исследовательские полеты лаборатории X-59 начнутся только в 2021 году и продлятся несколько лет.

Результаты исследований, полученные во время полетов X-59, в том числе и над населенными пунктами - добровольцами (их жители согласились, чтобы над ними в будние дни летали сверхзвуковые самолеты; после полетов наблюдатели будут рассказывать исследователям о своем восприятии шума), планируется передать на рассмотрение Федерального управления гражданской авиации США. Как ожидается, на их основе оно может пересмотреть запрет на сверхзвуковые полеты над населенной частью суши, но случится это не раньше 2025 года.


Василий Сычёв

Ту-144 - советский сверхзвуковой самолёт, разработанный КБ Туполева в 1960-е годы. Наряду с Конкордом он является одним из двух сверхзвуковых авиалайнеров, которые когда-либо использовались авиакомпаниями для коммерческих перевозок.

В 60-х годах в авиационных кругах США, Великобритании, Франции и СССР активно обсуждались проекты создания пассажирского сверхзвукового самолета с максимальной скоростью 2500-3000 км/ч, дальностью полета не менее 6-8 тысяч км. В ноябре 1962 года Франция и Великобритания подписали соглашение о совместной разработке и постройке «Конкорд» («Согласие»).

Создатели сверхзвукового самолёта

В Советском Союзе созданием сверхзвукового самолета занималось конструкторское бюро академика Андрея Туполева. На предварительном заседании КБ в январе 1963 года Туполев заявил:

«Размышляя о будущем авиаперевозок людей с одного континента на другой, приходишь к однозначному выводу: сверхзвуковые воздушные лайнеры несомненно нужны, и я не сомневаюсь, что в жизнь они войдут…»

Ведущим конструктором проекта назначен сын академика - Алексей Туполев. С его ОКБ тесно сотрудничали более тысячи специалистов из других организаций. Созданию предшествовали обширные теоретические и экспериментальные работы, включавшие многочисленные испытания в аэродинамических трубах и натурных условиях при полетах аналога.

«Конкорд» и Ту-144

Разработчикам пришлось поломать голову, чтобы найти оптимальную схему машины. Принципиально важна скорость проектируемого лайнера - 2500 или 3000 км/ч. Американцы, узнав, что «Конкорд» рассчитывается на 2500 км/ч, заявили, что всего на полгода позже выпустят свой пассажирский «Боинг-2707», выполненный из стали и титана. Только эти материалы без разрушительных последствий выдерживали нагрев конструкции при соприкосновении с воздушным потоком на скоростях 3000 км/ч и выше. Однако цельные стальные и титановые конструкции должны еще пройти серьезную технологическую и эксплуатационную проверку. На это уйдет много времени, и Туполев принимает решение строить сверхзвуковой самолет из дюралюминия, в расчете на скорость 2500 км/ч. Американский проект «Боинга» впоследствии был вообще закрыт.

В июне 1965 года модель показали на ежегодном авиасалоне в Париже. «Конкорд» и Ту-144 оказались поразительно похожими друг на друга. Советские конструкторы говорили - ничего удивительного: общая форма определяется законами аэродинамики и требованиями, предъявляемыми к определенному типу машин.

Форма крыла сверхзвукового самолета

Но какой должна быть форма крыла? Остановились на тонком треугольном крыле с очертанием переднего края в виде буквы «8». Бесхвостая схема - неизбежная при такой конструкции несущей плоскости - делала сверхзвуковой лайнер устойчивым и хорошо управляемым на всех режимах полета. Четыре двигателя находились под фюзеляжем, поближе к оси. Топливо размещено в кессонных крыльевых баках. Балансировочные баки, расположенные в задней части фюзеляжа и наплывах крыла, предназначены, чтобы изменять положение центра тяжести во время перехода от дозвуковой скорости полета к сверхзвуковой. Нос сделали острым и гладким. Но как в таком случае обеспечить пилотам передний обзор? Выход нашли - «кланяющийся нос». Фюзеляж круглого сечения имел носовой обтекатель кабины экипажа, отклоняющийся вниз под углом 12 градусов в условиях взлета и на 17 градусов при посадке.

Сверхзвуковой самолёт поднимается в небо

Впервые сверхзвуковой самолет поднимается в небо в последний день 1968 года. Машиной управлял летчик-испытатель Э.Елян. Как самолет пассажирского назначения он первый в мире преодолел скорость звука в начале июня 1969 года, находясь на высоте 11 километров. Вторую скорость звука (2М) сверхзвуковой самолет взял в середине 1970 года, находясь на высоте 16.3 километра. Сверхзвуковой самолет вобрал в себя множество нововведений конструкторского и технического плана. Здесь хочется отметить такое решение как переднее горизонтальное оперение. При использовании ПГО улучшалась маневренность полета и гасилась скорость при заходе на посадку. Отечественный сверхзвуковой самолет мог эксплуатироваться с двух десятков аэропортов, тогда как франко-английский «Конкорд», имея большую скорость при посадке, мог сесть только в сертифицированном аэропорту. Конструкторы КБ Туполева провели колоссальную работу. Взять, к примеру, натурные испытания крыла. Они проходили на летающей лаборатории — МиГ-21И, переделанного специально под испытания конструкции и оборудования крыла будущего сверхзвукового самолета.

Развитие и модификация

Работы по развитию базовой конструкции «044» шли в в двух направлениях: создание нового экономичного бесфорсажного ТРД типа РД-36-51 и значительное улучшение аэродинамики и конструкции сверхзвукового самолета. Результатом этого должно было стать выполнение требований по дальности сверхзвукового полета. Решение комиссии Совета Министров СССР по варианту сверхзвукового самолета с РД-36-51 было принято в 1969 году. Одновременно по предложению МАП — МГА принимается решение, до момента создания РД-36-51 и установки их на сверхзвуковой самолет, о строительстве шести сверхзвуковых самолетов с НК-144А с уменьшенными удельными расходами топлива. Конструкцию серийных сверхзвуковых самолетов с НК-144А предполагалось значительно модернизировать, провести значительные изменения в аэродинамике, получив на крейсерском сверхзвуковом режиме Кмакс более 8. Эта модернизация должна была обеспечить выполнение требований первого этапа по дальности (4000-4500 км), в дальнейшем предполагался переход в серии на РД-36-51.

Строительство модернизированного сверхзвукового самолета

Строительство предсерийного модернизированного Ту-144 («004) началось на ММЗ «Опыт» в 1968 году. По расчетным данным с двигателями НК-144 (Ср=2,01) предполагаемая сверхзвуковая дальность должна была составлять 3275 км, а с НК-144А (Ср=1,91) превысить 3500 км. С целью улучшения аэродинамических характеристик на крейсерском режиме М=2,2 изменили форму крыла в плане (стреловидность наплывной части по передней кромке уменьшили до 76°, а базовой увеличили до 57°) , форма крыла стала ближе к «готической». По сравнению с «044», увеличилась площадь крыла, ввели более интенсивную коническую крутку концевых частей крыла. Однако самым важным нововведением по аэродинамике крыла стало изменение срединной части крыла, обеспечившее самобалансировку на крейсерском режиме с минимальными потерями качества, с учетом оптимизации по полетным деформациям крыла на этом режиме. Была увеличена длина фюзеляжа с учетом размещения 150 пассажиров, улучшена форма носовой части, что также положительно повлияло на аэродинамику.

В отличие от «044» каждую пару двигателей в парных мотогондолах с воздухозаборниками раздвинули, освободив от них нижнюю часть фюзеляжа, разгрузив его от повышенных температурных и вибрационных нагрузок, при этом изменили нижнюю поверхность крыла в месте расчетной области поджатия потока, увеличили щель между нижней поверхностью крыла и верхней поверхностью воздухозаборника — все это позволило интенсивней использовать эффект поджатия потока на входе в воздухозаборники на Кмакс, чем это удалось получить на «044». Новая компоновка мотогондол потребовала изменений по шасси: основные стойки шасси разместили под мотогондолами, с уборкой их внутрь между воздушными каналами двигателей, перешли к восьмиколесной тележке, изменилась также схема уборки носовой стойки шасси. Важным отличием «004» от «044» стало внедрение переднего многосекционного убирающегося в полете крылышка-дестабилизатора, выдвигавшегося из фюзеляжа на взлетно-посадочных режимах, и позволявшего обеспечивать требуемую балансировку при отклоненных элевонах-закрылках. Доработки конструкции, увеличение коммерческой нагрузки и запаса топлива привели к возрастанию взлетной массы, которая превысила 190 тонн (для «044» — 150 тонн).

Предсерийный Ту-144

Строительство предсерийного сверхзвукового самолета № 01-1 (бортовой № 77101) завершилось в начале 1971 года, 1 июня 1971 года совершил первый полет. По программе заводских испытаний машина выполнила 231 полет, продолжительностью 338 часов, из них 55 часов летал на сверхзвуке. На этой машине отрабатывались комплексные вопросы вопросы взаимодействия силовой установки на различных режимах полета. 20 сентября 1972 года машина совершила перелет по трассе Москва-Ташкент, при этом маршрут был пройден за 1 час 50 минут, крейсерская скорость во время полета достигала 2500 км/ч. Предсерийная машина стала основой для развертывания серийного производства на Воронежском авиационном заводе (ВАЗ), которому решением правительства было поручено освоение в серии сверхзвукового самолета.

Первый полет серийного Ту-144

Первый полет серийного сверхзвукового самолета № 01-2 (бортовой № 77102) с двигателями НК-144А состоялся 20 марта 1972 года. В серии, по результатам испытаний предсерийной машины, была откорректирована аэродинамика крыла и еще раз несколько увеличена его площадь. Взлетная масса в серии достигла 195 тонн. Удельный расход топлива НК-144А к моменту эксплуатационных испытаний серийных машин намеревались довести до за счет оптимизации сопла двигателя до 1,65-1,67 кг/кгс час, а в дальнейшем до 1,57 кг/кгс час, при этом дальность полета должна была увеличиться до 3855-4250 км и 4550 км соответственно. Реально смогли достичь к 1977 году в ходе испытаний и доводок серии Ту-144 и НК-144А Ср=1,81 кг/ кгс час на крейсерском сверхзвуковом режиме тяги 5000 кгс, Ср=1,65 кг/кгс час на взлетном форсажном режиме тяги 20000 кгс, Ср=0,92 кг/кгс час на крейсерском дозвуковом режиме тяги 3000 кгс и на максимальном форсажном режиме на трансзвуковом режиме получили 11800 кгс.Обломок сверхзвукового самолета.

Полеты и испытания сверхзвукового самолета

Первый этап испытаний

За короткий период времени в строгом соответствии с программой было выполнено 395 полетов с общим налетом 739 часов, в том числе более 430 часов на сверхзвуковых режимах.

Второй этап испытаний

На втором этапе эксплуатационных испытаний в соответствии с совместным приказом министров авиационной промышленности и гражданской авиации от 13 сентября 1977 года № 149-223 происходило более активное подключение средств и служб гражданской авиации. Была образована новая комиссия по проведению испытаний, которую возглавил заместитель министра гражданской авиации Б.Д. Грубий. Решением комиссии, затем подтвержденным совместным приказом от 30 сентября - 5 октября 1977 года, были назначены экипажи для проведения эксплуатационных испытаний:

  1. Первый экипаж: летчики Б.Ф. Кузнецов (Московское транспортное управление ГА), С.Т. Агапов (ЖЛИиДБ), штурман С.П. Храмов (МТУ ГА), бортинженеры Ю.Н. Аваев (МТУ ГА), Ю.Т. Селиверстов (ЖЛИиДБ), ведущий инженер С.П. Авакимов (ЖЛИиДБ).
  2. Второй экипаж: летчики В.П. Воронин (МГУ ГА), И.К. Ведерников (ЖЛИиДБ), штурман А.А. Сенюк (МТУ ГА), бортинженеры Е.А. Требунцов (МТУ ГА) и В.В. Соломатин (ЖЛИиДБ), ведущий инженер В.В. Исаев (ГосНИИГА).
  3. Третий экипаж: летчики М.С. Кузнецов (ГосНИИГА), Г.В. Воронченко (ЖЛИиДБ), штурман В.В. Вязигин (ГосНИИГА), бортинженеры М.П. Исаев (МТУ ГА), В.В. Соломатин (ЖЛИиДБ), ведущий инженер В.Н. Поклад (ЖЛИиДБ).
  4. Четвертый экипаж: летчики Н.И. Юрсков (ГосНИИГА), В.А. Севанькаев (ЖЛИиДБ), штурман Ю.А. Васильев (ГосНИИГА), бортинженер В.Л. Венедиктов (ГосНИИГА), ведущий инженер И.С. Майборода (ГосНИИГА).

До начала испытаний была проведена большая работа по рассмотрению всех полученных материалов с целью использования их «для зачета» выполнения конкретных требований. Однако, несмотря на это, отдельные специалисты гражданской авиации настаивали на выполнении «Программы эксплуатационных испытаний сверхзвукового самолета», разработанной в ГосНИИГА еще в 1975 году под руководством ведущего инженера А.М.Тетерюкова. Эта программа требовала по сути, повторения уже ранее выполненных полетов в объеме 750 полетов (1200 летных часов) на трассах МГА.

Общий объем эксплуатационных полетов и испытаний по обоим этапам составят 445 полетов с налетом 835 часов, из них 475 часов на сверхзвуковых режимах. Выполнено 128 парных рейсов на маршруте Москва-Алма-Ата.

Заключительный этап

Заключительный этап испытаний не был напряженным с технической точки зрения. Ритмичная работа по расписанию обеспечивалась без серьезных сбоев и крупных дефектов. Инженерный и технический составы «развлекались», проводя оценки бытового оборудования, готовясь к пассажирским перевозкам. Подключенные к испытаниям стюардессы и соответствующие специалисты ГосНИИГА стали проводить наземные тренировки для отработки технологии обслуживания пассажиров в полете. Были проведены т.н. «розыгрыши» и два технических рейса с пассажирами. «Розыгрыш» был проведен 16 октября 1977 с полным моделированием цикла регистрации билетов, оформления багажа, посадки пассажиров, полета реальной продолжительности, высадки пассажиров, оформления багажа в аэропорту назначения. От «пасса- жиров» (лучших работников ОКБ, ЖЛИиДБ, ГосНИИГА и других организаций) отбою не было. Рацион питания в «полете» был на высшем уровне, поскольку утверждался по меню первого класса, все получили большое удовольствие. «Розыгрыш» позволил уточнить многие важные элементы и детали обслуживания пассажиров. 20 и 21 октября 1977 года были выполнены два технических рейса по трассе Москва-Алма-Ата с пассажирами. В качестве первых пассажиров выступали работники многих организаций, которые принимали непосредственное участие в создании и испытаниях сверхзвукового самолета. Сегодня даже трудно представить атмосферу на борту: там царило чувство радости и гордости, большая надежда на развитие на фоне первоклассного обслуживания, к которому технические люди абсолютно не приучены. В первых полетах на борту были все руководители головных институтов и организаций.

Дорога для пассажирских перевозок открыта

Технические рейсы прошли без серьезных замечаний и показали полную готовность сверхзвукового самолета и всех наземных служб к регулярным перевозкам. 25 октября 1977 года министром гражданской авиации СССР Б.П. Бугаевым и министром авиационной промышленности СССР В.А. Казаковым был утвержден основной документ: «Акт по результатам эксплуатационных испытаний сверхзвукового самолета с двигателями НК-144» с положительным заключением и выводами.

На основании представленных таблиц соответствия Ту-144 требованиям Временных норм летной годности гражданских Ту-144 СССР, полного объема представленной доказательной документации, включающей акты по государственным и эксплуатационным испытаниям, 29 октября 1977 года председатель Госавиарегистра СССР И.К. Мулкиджанов утвердил заключение и подписал первый в СССР сертификат летной годности типа № 03-144 на сверхзвуковой самолет с двигателями НК-144А.

Дорога для пассажирских перевозок была открыта.

Сверхзвуковой самолет мог садиться и взлетать в 18 аэропортах СССР, в то время как Конкорду, чья взлётно-посадочная скорость была на 15% выше, для каждого аэропорта требовался отдельный сертификат на посадку. По словам некоторых специалистов, если бы двигатели Конкорда размещались также, как у Ту-144, то аварии 25 июля 2000 года не произошло бы.

По словам специалистов, конструкция планера Ту-144 была идеальной, недоработки же касались двигателей и различных систем.

Второй серийный экземпляр сверхзвукового самолета

В июне 1973 года во Франции состоялся 30-й Международный парижский авиасалон. Огромным был интерес, вызванный советским лайнером Ту-144 - первым в мире сверхзвуковым самолетом. 2 июня тысячи посетителей авиасалона в пригороде Парижа Ле-Бурже наблюдали за выходом на взлетную полосу второго серийного экземпляра сверхзвукового самолета. Рев четырех двигателей, мощный разбег - и вот уже машина в воздухе. Острый нос лайнера выпрямился и нацелился в небо. Сверхзвуковой «Ту», ведомый капитаном Козловым, совершал над Парижем свой первый демонстрационный полет: набрав необходимую высоту, машина ушла за горизонт, потом вернулась и сделала круг над аэродромом. Полет проходил в нормальном режиме, никаких технических неполадок не отмечено.

На следующий день советский экипаж решил показать все, на что способен новый.

Катастрофа во время демонстрации

Солнечное утро 3 июня, казалось, не предвещало беды. Поначалу все шло по плану, - зрители, задрав головы, дружно аплодировали. Сверхзвуковой самолет, показав «высший класс», пошел на снижение. В этот момент в воздухе появился французский истребитель «Мираж» (как впоследствии выяснилось, он проводил съемку аэрошоу). Столкновение казалось неизбежным. Чтобы не врезаться в аэродром и зрителей, командир экипажа принял решение подняться выше и потянул штурвал на себя. Однако высота уже была потеряна, создались большие нагрузки на конструкцию; в результате правое крыло треснуло и отвалилось. Там начался пожар, и через несколько секунд пылающий сверхзвуковой самолет устремился к земле. Страшное приземление произошло на одной из улиц парижского пригорода Гусенвилля. Гигантская машина, круша все на своем пути, рухнула на землю и взорвалась. Весь экипаж - шесть человек - и восемь французов на земле погибли. Пострадал и Гусенвилль - разрушено несколько зданий. Что привело к трагедии? По мнению большинства экспертов, причиной катастрофы стала попытка экипажа сверхзвукового самолета уйти от столкновения с «Миражом». При заходе на посадку «Ту» попал в спутную струю от французского истребителя «Мираж».

Видео: Крушение Ту-144 в 1973 году: как это было

Эта версия приводится в книге Джина Александера «Русские самолеты с 1944 года» и в статье журнала «Эвиэйшн уик энд спейс текнолоджи» за 11 июня 1973 года, написанной по свежим следам. Авторы полагают, что пилот Михаил Козлов заходил на посадку не на ту полосу - то ли по ошибке руководителя полетов, то ли по невнимательности летчиков. Диспетчер вовремя заметил ошибку и предупредил советских пилотов. Но вместо того чтобы уйти на второй круг, Козлов заложил крутой вираж - и оказался прямо перед носом истребителя французских ВВС. Второй пилот в это время снимал кинокамерой сюжет об экипаже «Ту» для французского телевидения и поэтому не был пристегнут. Во время маневра он повалился на центральную консоль, и, пока возвращался на место, он уже потерял высоту. Козлов резко потянул штурвал на себя - перегрузка: правое крыло не выдержало. А вот другое объяснение страшной трагедии. Козлов получил приказ выжать максимум из машины. Еще при взлете он на малой скорости взял чуть ли не вертикальный угол. Для лайнера с такой конфигурацией это чревато огромными перегрузками. В результате не выдержал и отвалился один из внешних узлов.

По мнению работников ОКБ А.Н.Туполева, причина катастрофы была в подключении неотлаженного аналогового блока системы управления, приведшего к выходу на разрушающую перегрузку.

Шпионская версия принадлежит писателю Джеймсу Олбергу. Вкратце она такова. Советы старались «обставить» «Конкорд». Группа Н.Д. Кузнецова создала неплохие двигатели, однако они не могли работать при низких температурах в отличие от конкордовских. Тогда в дело включились советские разведчики. Пеньковский через своего агента Гревила Уайна раздобыл часть чертежей «Конкорда» и переправил их в Москву через восточногерманского торгового представителя. Британская контрразведка таким образом установила утечку, но, вместо того чтобы арестовать шпиона, решила подпустить в Москву дезинформацию по его же каналам. В результате на свет появился Ту-144, очень похожий на «Конкорд». Правду установить сложно, поскольку «черные ящики» ничего не прояснили. Один нашли в Бурже, на месте катастрофы, однако, судя по сообщениям, поврежденный. Второй так и не обнаружили. Есть мнение, что «черный ящик» сверхзвукового самолета стал предметом раздора между КГБ и ГРУ.

По словам лётчиков, внештатные ситуации происходили практически в каждом полёте. 23 мая 1978 года произошло второе крушение сверхзвукового самолета. Улучшенный опытный вариант лайнера, Ту-144Д (№ 77111) после возгорания топлива в зоне мотогондолы 3-ей силовой установки из-за разрушения топливопровода, задымления в кабине и отключения экипажем двух двигателей совершил вынужденную посадку на поле у деревни Ильинский Погост, неподалеку от города Егорьевска.

После приземления через форточку кабины экипажа покинули лайнер командир экипажа В. Д. Попов, второй пилот Э. В. Елян и штурман В. В. Вязигин. Находившиеся в салоне инженеры В. М. Кулеш, В. А. Исаев, В. Н. Столповский покинули лайнер через переднюю входную дверь. Бортинженеры О. А. Николаев и В. Л. Венедиктов оказались зажатыми на рабочем месте деформировавшимися при посадке конструкциями и погибли. (Отклоненный носовой обтекатель коснулся грунта первым, сработал как нож бульдозера, набирая землю, и провернулся под живот, войдя в фюзеляж.) 1 июня 1978 года Аэрофлот навсегда прекратил сверхзвуковые пассажирские рейсы.

Совершенствование сверхзвукового самолета

Работы над совершенствованием сверхзвукового самолета продолжались еще несколько лет. Выпущено пять серийных самолетов; еще пять находились в процессе постройки. Разработана новая модификация - Ту-144Д (дальний). Однако выбор нового двигателя (более экономичного), РД-36-51, потребовал значительной перепланировки самолета, особенно энергетической установки. Серьезные конструктивные пробелы в этой области привели к задержке выпуска нового лайнера. Лишь в ноябре 1974 года серийный Ту-144Д (бортовой номер 77105) поднялся в воздух, а спустя девять (!) лет после своего первого полета, 1 ноября 1977 года, сверхзвуковой самолет получил свидетельство летной годности. В тот же день открыты пассажирские рейсы. За свою недолгую эксплуатацию лайнеры перевезли 3194 пассажира. 31 мая 1978 года полеты прекращены: на одном из серийных Ту-144Д возник пожар, и лайнер потерпел катастрофу, разбившись при вынужденной посадке.

Катастрофы в Париже и Егорьевске привели к тому, что интерес к проекту со стороны государства уменьшился. С 1977 по 1978 год было выявлено 600 неполадок. В результате уже в 80-х годах сверхзвуковой самолет решено снять, объяснив это «плохим влиянием на здоровье людей при переходе звукового барьера». Тем не менее четыре из пяти находившихся в производстве Ту-144Д все же были достроены. В дальнейшем они базировались в Жуковском и поднимались в воздух в качестве летающих лабораторий. Всего было построено 16 сверхзвуковых самолетов (в том числе и в дальней модификации), совершивших в общей сложности 2556 вылетов. К середине 90-х годов из них сохранилось десять: четыре в музеях (Монино, Казань, Куйбышев, Ульяновск); один остался на заводе в Воронеже, где построен; еще один находился в Жуковском вместе с четырьмя Ту-144Д.

Впоследствии Ту-144Д использовался только для грузовых перевозок между Москвой и Хабаровском. В общей сложности, сверхзвуковой самолет совершил 102 рейса под флагом Аэрофлота, из них 55 - пассажирских (было перевезено 3 194 пассажира).

Позже сверхзвуковые самолеты совершали только испытательные полеты и несколько полетов с целью установления мировых рекордов.

На Ту-144ЛЛ были установлены двигатели НК-32 в связи с отсутствием пригодных к эксплуатации НК-144 или РД-36-51, аналогичные используемым на Ту-160, разнообразные датчики и испытательная контрольно-записывающая аппаратура.

Всего было построено 16 лайнеров Ту-144, которые совершили в общей сложности 2 556 вылетов и налетали 4 110 часов (среди них больше всего, 432 часа, налетал борт 77144). Постройка ещё четырёх лайнеров так и не была закончена.

Что стало с самолётами

Всего было построено 16 - борта 68001, 77101, 77102, 77105, 77106, 77107, 77108, 77109, 77110, 77111, 77112, 77113, 77114, 77115, 77116 и 77144.

Оставшихся в летном состоянии в настоящее время не существут. Практически полностью укомплектованы деталями и могут быть восстановлены до лётного состояния борты Ту-144ЛЛ № 77114 и ТУ-144Д № 77115.

В восстановимом состоянии ТУ-144ЛЛ № 77114, который использовался для тестов НАСА, хранится на аэродроме в Жуковском.

ТУ-144Д № 77115 также хранится на аэродроме в Жуковском. В 2007 году оба лайнера были заново окрашены и выставлены для всеобщего посещения на авиасалоне МАКС-2007.

№ 77114 и № 77115 будут скорее всего установлены в качестве памятников или экспонироваться на аэродроме в Жуковском. В 2004-2005 г. с ними были совершены некие сделки по продаже их на металлолом, но протесты авиационной общественности привели к сохранению их. Опасность продажи их на металлолом полностью не устранена. Вопросы о том в чью собственность они перейдут окончательно не решены.

На фотографии подпись первого космонавта высадившегося на луну Нила Армстронга, летчика космонавта Георгия Тимофеевича Берегового и всех погибших членов экипажа. Сверхзвуковой самолет № 77102 разбился во время демонстрационного полета на авиасалоне в Ле Бурже. Все 6 членов экипажа (заслуженный летчик-испытатель Герой Советского Союза М.В.Козлов, летчик-испытатель В.М.Молчанов, штурман Г.Н.Баженов, заместитель главного конструктора, инженер генерал-майор В.Н.Бендеров, ведущий инженер Б.А.Первухин и бортинженер А.И.Дралин) погибли.

Слева направо. Шесть членов экипажа борта сверхзвукового самолета №77102: заслуженный летчик-испытатель Герой Советского Союза М.В.Козлов, летчик-испытатель В.М.Молчанов, штурман Г.Н.Баженов, заместитель главного конструктора, инженер генерал-майор В.Н.Бендеров, ведущий инженер Б.А.Первухин и бортинженер А.И.Дралин (кто как стоит по порядку к сожалению не уточнила). Далее летчик-космонавт дважды Герой Советского Союза генерал-майор Береговой Георгий Тимофеевич, за ним слева Лавров Владимир Александрович, далее первый американский космонавт, высадившийся на луну Нил Армстронг, далее (стоят за Нилом) — Степан Гаврилович Корнеев (начальник УВС с управления внешних сношений президиума Академии Наук), в центре Туполев Андрей Николаевич — cоветский авиаконструктор, академик АН СССР, генерал-полковник, трижды Герой Социалистического Труда, Герой Труда РСФСР, потом Александр Александрович Архангельский, главный конструктор завода, советский авиаконструктор, доктор технических наук, заслуженный деятель науки и техники РСФСР, Герой Социалистического Труда. Крайний справа Туполев Алексей Андреевич (сын А.Н.Туполева) — российский авиаконструктор, академик РАН, академик АН СССР с 1984 года, Герой Социалистического Труда. Снимок сделан в 1970 году. Подписи на фото Г.Т.Берегового и Нила Армстронга.

Конкорд

Авария Конкорда.

В настоящее время лайнер не эксплуатируется из-за катастрофы 25 июля 2000 года. 10 апреля 2003 года British Airways и Air France объявили о решении прекратить коммерческую эксплуатацию своего парка «Конкордов». Последние рейсы состоялись 24 октября. Последний полёт «Конкорда» состоялся 26 ноября 2003 года, G-BOAF (последний построенный лайнер) вылетел из Хитроу, пролетел над Бискайским заливом, совершил проход над Бристолем, и приземлился в аэропорту Филтон.

Почему сверхзвуковой самолёт больше не эксплуатируют

Сверхзвуковой самолет Туполева часто называют «потерянным поколением». Межконтинентальные рейсы признаны неэкономичными: за час полета сверхзвуковой самолет сжигал в восемь раз больше горючего, чем обычный пассажирский. По той же причине не оправдали себя дальние перелеты - в Хабаровск и Владивосток. Нецелесообразно использовать сверхзвуковой «Ту» в качестве транспортного лайнера из-за его небольшой грузоподъемности. Правда, пассажирские перевозки на нем все же стали престижным и прибыльным делом для Аэрофлота, хотя билеты считались по тем временам очень дорогими. Даже после официального закрытия проекта, в августе 1984 года, руководитель Жуковской летно-испытательной базы Климов, начальник конструкторского отдела Пухов и заместитель главного конструктора Попов при поддержке энтузиастов сверхзвуковых полетов восстановили и ввели в строй два лайнера, а в 1985 году добились разрешения выполнять полеты для установления мировых рекордов. Экипажами Аганова и Веремея установлено более 18 мировых рекордов в классе сверхзвуковых самолетов - по скорости, скороподъемности и дальности полета с грузом.

16 марта 1996 года в Жуковском началась серия научно-исследовательских полетов Ту-144ЛЛ, который положил начало разработке второго поколения сверхзвуковых пассажирских лайнеров.

95-99 годы. Сверхзвуковой самолет с бортовым номером 77114 был использован американским НАСА как летающая лаборатория. Получил название Ту-144ЛЛ. Основное предназначение – исследования и испытания американских разработок для создания собственного современного сверхзвукового самолета для пассажирских перевозок.

Для самолета важный параметр – его скорость. Это тот показатель, который заботит и авиаторов, и диспетчеров, и, прежде всего, пассажиров. Обычным людям, пользующимся услугами воздушных судов, всегда интересно, с какой скоростью они будут лететь.

Современные лайнеры легко развивают 600-800 км/ч. И это далеко не предел. Показатели преодоления воздушного пространства могут быть как ниже, так и намного выше. В целом, наука за столетие смогла сделать огромный рывок вперед. Для примера, «Илья Муромец» в начале XX века мог стабильно удерживать только чуть больше 100 км/ч.

Какие параметры влияют на скорость?

Скорость летательного аппарата зависит от нескольких основных значений. Это характеристики самолета, величина его аэродинамических сил и те моменты, которые действуют извне: плотность воздуха, давление, сила и направление ветра.

С точки зрения физики, скорость самолета равна отношению расстояния ко времени. Обычно рассматривают средние показатели и для расчета берутся малые интервалы – чаще всего принято измерять скорость в метрах в секунду, что затем несложно перевести в километры в час (умножением на 3,6).

Различают несколько видов скоростей:

  • путевая – показатель движения воздушного судна относительно земной поверхности
  • истинная – скорость относительно воздушной среды; может совпадать с путевой при отсутствии ветра
  • приборная – показатель, определенный при помощи нескольких измерений давления посредством задействования специальных трубок

Классификация самолетов по скоростям

Специалисты разделяют существующие модели воздушных судов на такие виды:

  • Дозвуковые . Основная сфера гражданской авиации. Характеристики моделей различны, но наивысший показатель скорости современного лайнера примерно 1035 км/ч, что приближается уже к следующему виду самолетов.
  • Трансзвуковые . Здесь ускорение равно скорости звука или максимально приближено к нему. Например, на высоте 8 тыс. метров скорость звука составляет 1109 км/ч/ Соответственно, все воздушные суда, способные достичь этого предела, можно отнести к трансзвуковым.
  • Сверхзвуковые . Превышают звуковой барьер, активно используются в военной авиации. Истребители, штурмовики, беспилотники разгоняются до 3-4 тыс. км/ч.
  • Гиперзвуковые . Используются редко, но над разработкой новых гиперзвуковых летательных аппаратов трудятся сегодня инженеры в разных странах. Уровень скорости звука превышают в 5-6 раз. Экспериментальный американский Х-43А может разогнаться до 11 200 км/ч.

Пассажирские самолеты и их скорость

Гражданские лайнеры с пассажирами на борту вырабатывают в среднем 60-80% своего ресурса. Поэтому выделяют крейсерские показатели скорости и максимальные. В технической документации указываются два значения, причем средняя скорость рассчитывается конструкторами, исходя из предельно возможной.

Основные скоростные характеристики лайнеров

  • Ил-62 . Дальнемагистральный борт, вмещает 198 пассажиров, обычная скорость – 850 км/ч.
  • Ил-86 . Очень большой по размерам лайнер, способный перевезти 314 человек, 950 км/ч.
  • Ил-96 . Рассчитан на дальние перелёты и на 300 мест на борту максимум, норма – до 900 км/ч.
  • Ту-134 . Предназначен для непродолжительных полетов, до 96 человек, 850 км/ч.
  • Ту-154 . До 180 пассажиров и средний темп – 900-930 км/ч.
  • Ту-204 . Средний показатель – 850 км/ч, количество человек – до 214.
  • Як-40 . До 36 пассажиров, нормальный показатель – 510 км/ч, максимальный – 550.
  • Boeing-747 . На дальние расстояния до 298 человек, стандарт во время полета – 915-917 км/ч.
  • Boeing-777 . Также рассчитан на большие перелеты, но всего 148 пассажиров и 891 км/ч.
  • Airbus A310 . Маршруты разной протяженности. Стандартные показатели: 183 места, 858 км/ч.
  • Airbus A320 . Аэробус может преодолевать средние дистанции со скоростью 853 км/ч и со 149 пассажирами на борту.
  • Airbus A330 . Создан для длительных рейсов. Рассчитан на 398 человек. И средний темп – 925 км/ч.
  • Airbus А380 . Самый большой в мире пассажирский лайнер. Вместимость – 700, нормальная скорость – 890-900 км/ч при максимальной – 1019.

Самые быстрые пассажирские суда

Как видно, показатели эксплуатируемых сегодня гражданских судов варьируются в границах 600-900 км/ч. Тем не менее, истории известны случаи сверхзвуковых пассажирских лайнеров. Первый – знаменитый Ту-144, выпущенный в 1968 году и способный развивать до 2 500 км/ч. Его прекратили использовать в 1978 году. Второй – франко-английский «Конкорд», летавший до 2003 года.

На видео краткий экскурс в историю легендарных сверхзвуковых пассажирских самолетов. Обзор причин, почему мир отказался от ультраскоростных гражданских полетов.

Гиперзуковых лайнеров изобретено не было, но работа в этом направлении ведется и российскими конструкторами, и зарубежными. Наиболее известен сегодня европейский проект Zehst, который сможет развивать 5 тыс. км/ч. Подобные отечественные проекты – Ту-444 и Ту-244 – на текущий момент заморожены.

Причины отказа от сверхзвуковых скоростей

  • Отсутствие аэродромов . Количество полос, на которые возможно посадить сверхзвуковые лайнеры, очень ограничено. Как правило, это военные аэродромы.
  • Сложности конструкции . Сверхскоростные самолеты имеют обтекаемую форму и строгие ограничение по длине борта. Таким образом, конструктивно суда мало подходят под габариты пассажирских.
  • Чрезмерный расход топлива . Стоимость билетов на такие рейсы составила бы очень внушительную сумму, что экономически невыгодно как для потребителей, так и для перевозчиков.
  • Ремонтные работы и облуживание . Практически после каждого перелёта необходимо проводить полное обслуживание борта. Это проверка заклёпочных креплений, фюзеляжа и т. д.

Взлёт – как происходит и на каких скоростях

Каждый самолет имеет индивидуальные технические характеристики, в соответствии с которыми и происходит его эксплуатация. Процесс подъема лайнера в воздух осуществляется поэтапно.

  1. Набор оборотов двигателем . Приблизительно на 800-820 оборотах в минуту начинается движение самолета по полосе.
  2. Разгон и ускорение . Пилот управляет воздушным судном на земле, достигая необходимых показателей скорости, находясь в устойчивом положении на трех колесах.
  3. Отрыв и набор высоты. Для осуществления собственно взлета требуется разогнать самолет до 185 км/ч и плавно поднять нос путем натяжения рукояти. Вследствие этого судно продолжает движение на двух колесах и отрывается от земли, достигнув скорости 225 км/ч.

Выше приведены примерные показатели для модели Boeing-737. Чем выше масса лайнера, тем большую скорость он должен развить на земле. Кроме того, имеют значение при взлете и наборе высоты также и внешние факторы. Это направление и сила ветра, плотность воздушного потока, влажность, качество и состояние взлетной полосы.

В случаях, когда сильный ветер против движения самолета, могут понадобиться показатели, превышающие стандартные вдвое. При этом в обратной ситуации, когда ветер попутный, усилия будут нужны минимальные.

Посадка самолета

Приземление воздушного судна – процесс противоположный взлету. Соответственно, все этапы выполняются в обратной последовательности: плавное снижение, заход на посадку и выпрямление, удерживание самолета и касание полосы.

M = 1,2-5).

Энциклопедичный YouTube

  • 1 / 5

    В наши дни появляются новые самолёты, в том числе выполненные по технологии снижения заметности «Стелс ».

    Пассажирские сверхзвуковые самолёты

    Известны всего два серийно выпускавшихся пассажирских сверхзвуковых самолёта, выполнявших регулярные рейсы: советский самолёт Ту-144 , совершивший первый полёт 31 декабря 1968 года и бывший в эксплуатации с по 1978 год и выполнивший двумя месяцами позже - 2 марта 1969 года - свой первый полёт англо-французский «Конкорд» (фр. Concorde - «согласие»), совершавший трансатлантические рейсы с по 2003 год . Их эксплуатация позволяла не только значительно сократить время перелёта на дальних рейсах, но и использовать незагруженное воздушное пространство на больших высотах (≈18 км), в то время как основное используемое лайнерами воздушное пространство (высоты 9-12 км) уже в те годы было сильно загруженным. Также сверхзвуковые самолёты совершали полёты по спрямлённым маршрутам (вне воздушных трасс).

    Несмотря на неосуществление нескольких других бывших и существующих проектов пассажирских сверхзвуковых и околозвуковых самолётов (Boeing 2707 , Boeing Sonic Cruiser , Douglas 2229 , Lockheed L-2000, Ту-244 , Ту-344 , Ту-444 , SSBJ и др.) и вывод из эксплуатации самолётов двух реализованных проектов, разрабатывались ранее и существуют современные проекты гиперзвуковых (в том числе суборбитальных) пассажирских авиалайнеров (напр., ZEHST , SpaceLiner) и военно-транспортных (десантных) самолётов быстрого реагирования. На разрабатываемый пассажирский бизнес-джет Aerion AS2 в ноябре 2015 был сделан твердый заказ на 20 единиц суммарной стоимость 2,4 миллиарда долларов с началом поставок в 2023 году.

    Теоретические проблемы

    Полёт на сверхзвуковой скорости, в отличие от дозвукового, протекает в условиях иной аэродинамики, поскольку при достижении воздушным судном скорости звука качественно меняется аэродинамика обтекания, из-за чего резко возрастает аэродинамическое сопротивление , также растёт кинетический нагрев конструкции от трения набегающего на большой скорости воздушного потока, смещается аэродинамический фокус, что ведёт к утрате устойчивости и управляемости самолёта. Кроме того, проявилось такое неизвестное до создания первых сверхзвуковых самолётов явление, как «волновое сопротивление».

    Поэтому достижение скорости звука и эффективный стабильный полёт на около- и сверхзвуковых скоростях были невозможны за счёт простого увеличения мощности двигателей - потребовались новые конструктивные решения. Как следствие, изменился внешний облик самолёта: появились характерные прямые линии, острые углы, в отличие от «гладких» форм дозвуковых самолётов.

    Следует отметить, что проблему создания эффективного сверхзвукового самолёта нельзя считать разрешённой до сих пор. Создателям приходится идти на компромисс между требованием увеличения скорости и сохранением приемлемых взлётно-посадочных характеристик. Таким образом, завоевание авиацией новых рубежей по скорости и высотности связано не только с использованием более совершенной или принципиально новой двигательной установки и новой конструктивной компоновки самолётов, но также с изменениями их геометрии в полёте. Такие изменения, улучшая характеристики самолёта на больших скоростях, не должны ухудшать их качества на малых скоростях, и наоборот. В последнее время создатели отказываются от уменьшения площади крыла и относительной толщины их профилей, а также увеличения угла стреловидности крыла у самолётов с изменяемой геометрией, возвращаясь к крыльям малой стреловидности и большой относительной толщины, если уже достигнуты удовлетворительные величины максимальной скорости и практического потолка. В таком случае считается важным, чтобы сверхзвуковой самолёт имел хорошие лётные данные на малых скоростях и малое сопротивления при больших скоростях, особенно на малых высотах.

    Скорость звуковой волны величина не постоянная даже при условии, что рассматриваемая среда распространения звука является воздухом. Скорость звука при фиксированной температуре воздуха и атмосферного давления изменяется с ростом высоты над уровнем моря.

    По мере увеличения высоты над уровнем моря скорость звука уменьшается. Условной точкой отсчета величины является нулевой уровень моря. Итак, скорость с которой звуковая волна стелится по водной глади равняется 340.29 м/с при условии температуры окружающего воздуха в 15 0 С и атмосферного давления 760 мм. рт.ст. Итак, самолеты летающие со скоростью выше, чем скорость звука, называют сверхзвуковыми.

    Первые достижение сверхзвуковой скорости

    Сверхзвуковыми самолетами называют летательные аппараты исходя из их физической способности передвигаться со скоростью выше чем звуковые волны. В привычных для нас километрах в час этот показатель грубо равен 1200 км/ч.

    Еще самолеты времен Второй мировой войны с поршневыми ДВС и создающими воздушный поток пропеллерами при пикировании уже достигали отметки скорости в 1000 км/ч. Правда по рассказам пилотов, в эти моменты самолет начинало жутко трясти вследствие сильной вибрации. Ощущение было такое, что крылья могут попросту оторваться от фюзеляжной части самолета.

    Впоследствии при создании сверхзвуковых самолетов инженеры-проектировщики учитывали влияние воздушных потоков на конструкцию самолетов при достижении скорости звука.

    Преодоление сверхзвукового барьера самолетом

    Когда самолет передвигается среди воздушных масс он буквально рассекает воздух во все стороны, создавая шумовой эффект и расходящиеся во все направления волны воздушного давления. При достижении летательного аппарата скорости звука возникает момент, когда звуковая волна не способна обогнать самолет. Из-за этого перед фронтальной частью самолета возникает ударная волна в виде плотного барьера из воздуха.

    Возникший впереди самолета слой воздуха в момент достижения летательным аппаратом скорости звука создает резкий рост сопротивления, что и служит источником изменения характеристик устойчивости самолета.

    Когда самолет летит, звуковые волны распространяются от него во все стороны со скоростью звука. Когда самолет достигает скорости М=1, то есть скорости звук, звуковые волны скапливаются перед ним и образуют слой уплотненного воздуха. При скоростях выше скорости звука эти волны образуют ударную волну, которая достигает земли. Ударная волна воспринимается как звуковой удар, акустически воспринимаемый человеческим ухом внизу на земной поверхности как глухой взрыв.

    Этот эффект можно постоянно наблюдать при проведении учений сверхзвуковых самолетов гражданским населением в районе полетов.

    Еще одним интересным физическим явлением при полете сверхзвуковых самолетов — это визуальное опережение летательных аппаратов их собственного звука. Звук наблюдается с некоторым опозданием за хвостом самолета.

    Число Маха в авиации

    Теорию с подтверждающим экспериментальным процессом образования ударных волн был продемонстрировал еще задолго до первого полета сверхзвукового самолета австрийский физик Эрнст Мах (1838 — 1916). Величину, выражающую отношение скорости летательного аппарата к скорости звуковой волны называют сегодня в честь ученого - Махом.

    Как мы уже оговорились в водной части, на скорость звука в воздушной среде влияют такие метеорологические условия как давление, влажность и температура воздуха. Температура в зависимости от высоты полета самолета меняется от +50 на поверхностях Земли до -50 в слоях стратосферы. Поэтому на разных высотах для достижения сверхзвуковых скоростей обязательно учитываются местные метеоусловия.

    Для сравнения над нулевой отметкой уровня моря скорость звука составляет 1240 км/ч, тогда как на высоте более 13 тыс. км. эта скорость снижается до 1060 км/ч.

    Если принять соотношение скорости летательного аппарата к скорости звукова за М, то при значении М>1, это будет всегда сверхсвуковая скорость.

    Самолеты с дозвуковой скоростью имеют значение М = 0.8. Вилка значений Маха от 0,8 до 1,2 задают околозвуковую скорость. А вот гиперзвуковые летательные аппараты имеют число Маха более 5. Из известных военных российских сверхзвуковых самолетов можно выделить СУ-27 — истребитель перехватчик, Ту-22М — бомбардировщик ракетоносец. Из американских известен SR-71 — самолет разведчик. Первым сверхзвуковым самолетом в рамках серийного производства стал американский истребитель F-100 в 1953 году.

    Модель космического челнока во время испытаний в сверхзвуковой аэродинамической трубе. Специальная методика теневой фотографии позволила запечатлеть, где возникают ударные волны.

    Первый сверхзвуковой самолет

    За 30 лет с 1940 по 1970 скорость самолетов выросла в несколько раз. Первый перелет с околозвуковой скоростью был совершен 14 октября 1947 года на американском самолете Bell XS-1 в штате Калифорния над авиабазой.

    Пилотировал реактивный самолет Bell XS-1 капитан американских ВВС Чак Йиге. Ему удалось разогнать аппарат до скорости 1066 км/ч. В ходе данного испытания был получен существенный срез данных для дальнейшего толчка в развитии сверхзвуковых самолетов.

    Конструкция крыльев сверхзвуковых самолетов

    Подъемная сила и лобовое сопротивление со скоростью увеличиваются, поэтому крылья становятся меньше, тоньше и приобретали стреловидную форму, улучшая обтекаемость.

    У самолетов, приспособленных к сверхзвуковым полетам крылья в отличии от обычных дозвуковых самолетов вытягивались под острым углом назад, напоминая наконечник стрелы. Внешне крылья образовывали треугольник в единой плоскости с его остроугольной вершиной в передней части самолета. Треугольная геометрия крыла позволяла управлять самолетом предсказуемо в момент перехода звукового барьера и как следствие избежать вибраций.

    Существуют модели, в которых применялись крылья с изменяемой геометрией. В момент взлета и посадки угол крыла относительно самолета равнялся 90 градусам, то есть перпендикулярен. Это необходимо для создания максимальной подъемной силы в момент взлета и посадки, то есть в тот момент когда скорость снижается и подъемная сила при остром угле при неизменной геометрии достигает своего критического минимума. С ростом скорости геометрия крыла изменяется до максимально острого угла у основания треугольника.

    Самолеты-рекордсмены

    В ходе гонки за рекордными скоростями в небе самолетом Bell-X15, на борту которого был установлен ракетный двигатель, была достигнута рекордная скорость 6,72 или 7200 км/ч в 1967 году. Этот рекорд не могли побить спустя долгое время.

    И только в 2004 году беспилотный гиперзвуковой летательный аппарат NASA X-43, который разрабатывался для полета с гиперзвуковой скоростью, удалось в рамках его третьего полета разогнать до рекордных 11 850 км/ч.

    Первые два полета закончились неудачно. На сегодняшний день эта самая высокая цифра скорости самолета.

    Испытания сверхзвукового автомобиля

    На этом реактивном сверхзвуковом автомобиле Thrust SSC установлены 2 авиационных двигателя. В 1997 году он стал первым наземным транспортным средством, преодолевшим звуковой барьер. Как и при сверхзвуковом полете, перед автомобилем возникает ударная волна.

    Приближение автомобиля беззвучно, потому, что весь создаваемый шум сосредоточен в идущей за ним ударной волне.

    Сверхзвуковые самолеты в гражданской авиации

    Что касается гражданских сверхзвуковых самолетов, то всего известны 2 серийных самолета, выполняющих регулярные рейсы: советский ТУ-144 и французский Concorde. ТУ-144 осуществил свой дебютный вылет в 1968 году. Данные аппараты были предназначены для дальних трансатлантических перелетов. Время перелета были значительно сокращены в сравнении с дозвуковыми аппаратами за счет увеличения высоты перелета до 18 км, где самолет использовал незагруженный воздушный коридор и миновал облачную загрузку.

    Первый гражданский сверхзвуковой самолет СССР ТУ-144 завершил свои полеты в 1978 году по причине их нерентабельности. Окончательную точку в решении об отказе эксплуатировать в регулярных рейсах было принято из-за катастрофы опытного экземпляра ТУ-144Д во время его испытания. Хотя стоит отметить, что за рамками гражданской авиации самолет ТУ-144 продолжали эксплуатировать для срочной почтовой и грузовой доставки с Москвы в Хабаровск вплоть до 1991 года.

    Тем временем несмотря на дорогие билеты, французский сверхзвуковой самолет «Конкорд» продолжал оказывать услуги аваиарейсов для своих европейских клиентов до 2003 года. Но в конце концов, несмотря на более богатый социальный слой европейских жителей, вопрос нерентабельности был все равно неминуем.